
Alpha Marquee Control

ActiveX Developer’s Reference

Version 2.0

Copyright 2002 Adaptive Micro Systems, Inc

Message Manager – User’s Guide

INTRODUCTION

The Marquee Control is a development tool designed to ease communication with an Alpha
Marquee Display.

The Marquee Control is an ActiveX Control. As such, it should function in any container that
supports the ActiveX standard.

The Marquee Control can display predefined messages, stored in ‘Message Files’ in XML format,
or can be used to display messages created at run-time.

The Message Manager utility is provided with the Control to allow message creation, modification,
and deletion. A given message file can hold as many messages as desired.

The Marquee Control offers multiple modes of operation for displaying different types of data.

SYSTEM REQUIREMENTS

Microsoft Internet Explorer 5.0 (or greater)
Must be installed on the machine, but does not need to be the default browser. IE is not
used by the Control, but it does make use of some libraries installed with IE.

Internet Explorer 4.01 can meet this requirement if the ‘xmlredist.exe’ is used to upgrade
the needed libraries. This file is run automatically upon installation if needed. If Internet
Explorer 4.01 is installed after the Control, ‘xmlredist.exe’ must be run before the Control
will function properly.

A design environment that supports ActiveX controls. The Control should function in any ActiveX
container, such as Visual C++, compatible manufacturing software/Human Machine Interface
(HMI), as well as business applications such as Microsoft Excel.

NOTE: The following five containers have all been tested and message samples for them are
available upon installation:

Microsoft Visual Basic 6.0 SP3
GE Cimplicity 4.01 SP3
Intellution iFix 2.1
Rockwell RSView32 6.20.49
Wonderware Intouch 7.1

Serial or LAN connection to an Adaptive Alpha Marquee.

GETTING STARTED

Open the container to be used in its design environment.

Load / Install the Control within the container if needed.
For example, in Visual Basic, the Control must be selected under “Components”, or in
Wonderware’s Intouch, an ActiveX Control must be installed with the Installation Wizard.

Place an instance of the Control in your application.

Message Manager – User’s Guide

Bring up the Control’s property pages. Set properties to desired values.
 Minimally: set MarqueeAddress on the ‘General’ tab, and set LAN or Serial properties
on the ‘Communication’ tab.

Place code in a script/event/function to call the Initialize (or InitializeAdv) method upon
startup.

As desired, add code or objects to call methods of the control.

Run application.

GENERAL USE

Initialize the Control
The Initialize (or InitializeAdv) method should be called before any other method on the
Control. Startup scripts/events of the containing application are a good place to do this.

Pre-defined Messages
Calling ChangeMode makes use of other properties on the Control. Make sure to set these
properties before calling ChangeMode.

For example, to display a template, the TemplateName and MessageFile properties should
combine to reference an existing template in an existing file. Thus, in Visual Basic:

Marquee1.MessageFile = “c:\AMS Marquee\Demos\demoMessages.xml”
Marquee1.TemplateName = “Status”
Marquee1.ChangeMode(“Template”)

If one file contains all the templates to be used by the application, MessageFile can be set at
design time on the ‘General’ property page. Then, the property does not need to be set through
code each time the Control changes mode.

If the message contains variables, those variables can be updated with a call to the
UpdateVariable (or UpdateVariableAdv) method.

Custom Messages
Messages can be created through code with a single call to the QuickDisplay method.
Attributes of the message are sent as parameters to the method.

Other Functionality
The ResetBoard method can be used to send a reset signal to the marquee. This causes the
marquee to run through its startup routine. The reset is a “soft” reset that is non-destructive to
the marquee’s internal memory.

The Clear method can be used to remove all messages from the marquee.

CHANGES

Changes in 1.0.2
1. New: Addition of UpdateVariableAdv method.

Message Manager – User’s Guide

An extended version of the UpdateVariable method has been added to the Control entitled
UpdateVariableAdv. This new method retains all functionality of UpdateVariable and
adds two optional parameters that control the variable’s color and flash state.

Flashing a template variable decreases update speed. By design, while showing a template,
the marquee uses zero delay between updates to its display. This allows all variables on the
marquee to be updated as fast as possible. However, a non-zero delay is used when flashing
a variable in order to allow time for the flash to be visible. This delay causes the
performance decrease.

Depending on the type of data shown, this behavior may or may not be acceptable. If real-
time data is the goal, avoid flashing variables. If an update approximately every 3-5 seconds
is acceptable, flashing variables are a viable option.

2. Change: Communication property availability.
In an effort to make the Control as flexible as possible, the “design-time only” attribute of
several properties has been lifted. The following properties are modifiable through code, at
run-time, until the Initialize (or InitializeAdv) method is called:

MarqueeConnectMode
NetworkAddress
NetworkPort
SerialComPort
SerialBaudRate
SerialParity
SerialDataBits
SerialStopBits

Once Initialize (or InitializeAdv) has been called there should be no need to change these
properties, and thus they are not modifiable.

Changes in 1.1 (or 1.0.4)
1. Fix: DoEvents
A. The Control calls DoEvents after each transmission in TCP/IP mode. This relieves the end-

user from calling DoEvents.

B. Recompilation with Visual Studio 6.0 SP5 should fix the bug where multiple controls using the
TCP/IP communication can cause communication loss of if not separated by DoEvents.

For example, if two Marquee controls were used, Marquee1 and Marquee2, sending data to
both without separating them with a DoEvents usually resulted in only the second send being
successful:

Marquee1.UpdateVariable(“test”, 1)
Marquee2.UpdateVariable(“test”, 1) ‘ Clobbers the call by Marquee1

Marquee1.UpdateVariable(“test”, 1)
DoEvents
Marquee2.UpdateVariable(“test”, 1) ‘ OK because of DoEvents call

With version 1.0.4 (or later), the first scenario should function properly.

Service Pack 4 for Visual Studio supposedly fixes this issue with an update to the Winsock
Control. Microsoft Knowledge base Article: Q245159. (The Marquee Control uses the
Winsock Control for TCP/IP communication.)

Message Manager – User’s Guide

2. New: Addition of ResetCommunication method.

Serial mode: Closes COM port if stranded open.

TCP/IP mode: Closes socket connection, attempts to re-establish the socket connection.

A boolean return value indicates success/failure of method call.

Changes in 2.0
1. New: Addition of InitializeAdv method.

An extended version of the Initialize method has been added to the Control entitled
InitializeAdv. This new method retains all functionality of Initialize and adds an optional
parameter that controls whether the TCP/IP connection is opened and closed for every
transmission to the marquee. With the Initialize method, when using TCP/IP, the Control
creates a permanent socket connection.

NOTE: opening and closing the TCP/IP connection for every transmission updates the
marquee at a slower rate than having a permanent socket connection.

2. Change: Supports multiple pages and multiple modes in templates.
The Message Manager was updated to allow users to create templates that have multiple
pages and/or text that rotates along the bottom of the marquee. The Control supports this
new type of template and displays it appropriately.

3. New: Supports Simulating messages
The AlphaNET simulator (alphasim.exe) was installed with the control. By selecting the
“simulate” option on the Communication tab of the Properties page of the Control, messages
can be sent to the simulator instead of to a marquee display.

4. New: Addition of GetSocketState method
This method will allow the user to find out the current state of the socket connection. The
states that might be seen are:
Closed [0]
Closing [8]
Connected [7]
Connecting [6]
Connection Pending [3]
Error [9]
HostResolved [5]
Listening [2]
Resolving Host [4]
Unknown [#] (where # would be the number returned by the Winsock control)

COMPATABILITY

Version 2.0 of the Control is backward compatible with all applications created using earlier
versions of the Control. That is, version 2.0 of the Control maintains all COM class and interface
IDs.

Message Manager – User’s Guide

MODES

The Control can function in several different modes.

Template Mode
Template mode is designed for displaying production information or statistics. Originally,
Templates were designed to fill the marquee display and would not move on and off the
marquee. Only color (per character) and font (per template) attributes are available.

This version of the Control supports a multiple page template type. This type of
template supports multiple pages of information to be displayed on the marquee. The
font selected applies to the whole page of the template. A different font can be selected
for each page of the template. In addition, each page of the template can have a
different hold speed. The hold time for each page is based on Adaptive’s standard hold
speeds (Speed 1 through Speed 5 or No Hold Speed). This new template type also
supports a single line of text to be rotated across the bottom of a marquee. The non-
rotating text still allows color selection per character. The character color selected at the
time the template is saved is the color the rotating text will be. The rotating text does
not allow variables.

Parts of the template (on the original template or the non-rotating portion of the multiple
page template) can be configured statically to display labels, such as “Machine#” or
“Parts/Hr”. Other parts of the template can be configured to show variables, like the
current value of a machine number or parts per hour. Variables can be updated at any
time using the UpdateVariable (or UpdateVariableAdv) method.

Example:

The Message Ma

String Mode
String mode is in
position, speed a
a character basi

Example: “Shift
at low speed, ac
letters.

String mode sup
UpdateVariabl
for shift 3 or 4 b

The Message Ma
Parts/Hr: XXXX Count: XXXX
Machine #: XX
nager utility is used to design Template messages.

tended for use with messages that have movement. Color, font, mode,
nd special attributes are available for strings. Color can be selected on

s; remaining attributes affect the complete string.

 2 has met its production goal!” can be configured to scroll left to right,
ross the middle of the marquee, with various colors, in five high standard

ports variables, which are updated by calls to the UpdateVariable (or
eAdv) method. Therefore, the above example could be easily be used
y making the shift number a variable.

nager utility is used to design String messages.

Message Manager – User’s Guide

Alarm Mode
Alarms are Strings that must be acknowledged before other messages can be displayed.
However, unlike Strings, Alarms do not support the ability to define variables.

The Control will maintain an internal queue of alarms. All alarms in the queue will be
displayed one after another in a round-robin manner

Alarm mode can be entered explicitly or implicitly.

• Calling the ChangeMode function will explicitly put the marquee in alarm mode. If
no alarms are in the Control’s queue, nothing will be displayed on the marquee.
Alarms can be added and acknowledged as needed with the AlarmAdd,
AlarmAcknowledge, and AlarmAcknowledgeAll functions. When all alarms
have been acknowledged, the marquee displays nothing. The marquee will remain
in alarm mode until a call to ChangeMode switches the current mode.

• Adding an alarm with the AlarmAdd function will implicitly put the marquee in alarm
mode. If the Control is already in alarm mode, the alarm is added to the Control’s
queue. If the Control is not in alarm mode, it will save its settings, enter alarm
mode, and add the first alarm to its queue. Additional alarms can be added; any
alarm can be acknowledged. Once the last alarm has been acknowledged, the
Control will revert to its saved settings (displaying what it was before entering alarm
mode.)

No State
The Control does not have to keep an internal state. The Control can simply be used as an
interface to the marquee if desired. This can be accomplished by using only the QuickDisplay
and Strings that contain no variables.

Alarm mode requires the Control to keep an internal queue of alarms to rotate to the marquee.
Templates and Strings with variables require the Control to keep an active list of available
variables and where they are located. Thus, these modes cannot be used in a stateless manner.

CONNECTIONS

Communication

Serial
Each Control is configurable at design time to use a specific COM port. The COM port is opened
and closed as needed by the Control. Thus, multiple Controls can be configured to use the same
COM port.

TCP/IP
Each Control is configurable at design time to use a specific remote IP address and remote port.
Thus, you must know during design, the marquee ethernet adapter’s IP address and the port to
which the marquee is connected.

Due to the overhead of creating a socket connection with the ethernet adapter, the socket
connection is made when the Control is initialized, and terminated when the Control terminates.
(This is true if you use the Initialize method or if you use the InitializeAdv method, passing
nothing or False for the optional parameter to open and close the TCP/IP connection on each
transmission.) Note that this is different from Serial communication. Since a Control maintains

Message Manager – User’s Guide

the socket to the ethernet adapter, only one Control can use a given IP address. It is possible to
use the IntializeAdv method (passing True for the optional parameter to open and close the
TCP/IP connection on each transmission) to set the socket connection to work the same as the
Serial communication. As stated, this will cause additional overhead and updates to the marquee
will appear rather slow.

Simulate
Each Control is configurable at design time to use the AlphaNET simulator to view messages,
instead of sending directly to a marquee display. Any message sent will show up in the simulator
(alphasim.exe). How the message is displayed in the simulator is how it will show up on the
display (assuming you set the simulator to the same marquee display you are using.)

Single marquee per connection

If each marquee has its own IP address or COM port, the application simply needs one Control
per marquee.

Multiple marquees per connection

It is possible to “chain” marquees together. In this situation, from the perspective of the local
computer, multiple marquees exist at one connection (be it a COM port or IP address.)

Serial
When multiple marquees exist behind one COM port, the number of Controls needed depends on
how the marquees are to be used.

If all the marquees are to display the same data, they can be thought of as one marquee. Thus,
only one Control is needed. Simply set the Control’s MarqueeAddress property to ‘00’ to
broadcast to all marquees.

If the marquees are to display different data, one Control per marquee will be needed. Configure
each Control to use the given COM port, and set the MarqueeAddress property to the address
of a single marquee.

TCP/IP
When multiple marquees exist behind one IP address, less flexibility exists. Only one Control can
access the IP address since the Control maintains a socket connection to the adapter at that
address, as discussed above.

If all the marquees are to display the same data, they can be thought of as one marquee. Thus,
only one Control is needed. Simply set the Control’s MarqueeAddress property to ‘00’ to
broadcast to all marquees. This is the same as a Serial connection.

The difference becomes apparent when the marquees are to display different data. A Control
only has one internal state. Since the marquees are to display different data, multiple controls
are required. However, only one Control can use the single IP address. Thus, if the Control
monitors states (Templates, Strings with variables, or Alarms), all marquees at the IP address
must display the same data.

If the Control can be used in a “stateless” mode, the marquees can display different data. Prior
to any communication with the marquees, simply reset the MarqueeAddress property to the
desired marquee. Stateless operation means using QuickDisplay and Strings with no variables.

Message Manager – User’s Guide

MESSAGE MANAGER UTILITY

Templates, Strings, and Alarms are stored in message files to be used by the Control. The
messages are stored in XML format, hence the “.xml” extension. The Message Manager utility is
installed in the same directory as the Marquee Control. A sample message file,
“demoMessages.xml” is installed in the ‘Demos’ directory.

Message files can contain any number of Alarms, Templates, and Strings.

User Interface

The Message Manager utility provides a user interface for creating the Message files. The main
window is divided into two panes.

The left pane operates much like the standard Windows Explorer. Message files can be added
and removed as desired. When a message file is loaded, the contained messages are grouped by
type. When a single message is selected, an editor should appear in the right pane and load the
selected message.

The right pane displays an editor specific to the type of message selected. The original
Templates and the new ‘multiple page’ Templates have their own editors while Strings and
Alarms share a third editor.

Message Manager – User’s Guide

Templates

Selecting an original Template from the tree causes the Template to be displayed on the right.
(These have an orange paper clip icon.)

• The controls at the top determine template attributes. Rows and Columns determine
the size of the grid just below. Font determines what font will be used on the
marquee. This selection has no visual implications on the grid.

• The grid represents the marquee.

• Color will change the color of the cursor at its current location. Selecting several
cells or a variable will change the color of all selected cells.

• View Font Size only adjusts the size of the font used in the grid. This is for user
convenience only and has no effect on the message displayed on the marquee.

• Variables can be defined by selecting cell(s) on the grid, typing a name in the
Variables section at the bottom, and clicking Add. The list box shows all defined
variables for the Template. The variable’s name is used in later calls to
UpdateVariable (or UpdateVariableAdv).

• The Save button at the bottom saves the Template to the file.

Message Manager – User’s Guide

Selecting a new ‘multiple page’ Template from the tree causes the Template to be displayed on
the right. (These have a blue paper clip icon.)

• The controls at the top determine template attributes. Rows and Columns determine
the size of the grid just below. Font determines what font will be used on the
marquee. This selection has no visual implications on the grid.

• The grid represents the marquee.

• Color will change the color of the cursor at its current location. Selecting several
cells or a variable will change the color of all selected cells.

• View Font Size only adjusts the size of the font used in the grid. This is for user
convenience only and has no effect on the message displayed on the marquee.

• Variables can be defined by selecting cell(s) on the grid, typing a name in the
Variables section at the bottom, and clicking Add. The list box shows all defined
variables for the Template. The variable’s name is used in later calls to
UpdateVariable (or UpdateVariableAdv).

• Text to rotate on the bottom of the marquee can be typed in. This is optional and
the color in the color combo box at the time the template is saved is the color the
text to rotate will be.

Message Manager – User’s Guide

• If there is text to be rotate, the Page Hold Speed will be grayed out, as it is not
possible to have a hold speed for the rotate mode. If there is no text to be rotated,
the Page Hold Time can be selected.

• The Previous Page button at the bottom will take you to the previous page of the
‘multiple page’ template, if applicable.

• The Next Page button at the bottom will take you to the next page of the ‘multiple
page’ template, if applicable.

• The Add Page button at the bottom will add a new page to the ‘multiple page’
template at the current location. (For example, if looking at page 3 of 4 and the Add
Page button is clicked, the new page will be placed after page 3. The new, blank
page will be displayed, which would be page 4 of 5. The page that was page 4 will
now be page 5.)

• The Remove Page button at the bottom will remove the page currently being looked
at.

• The Save button at the bottom saves the Template to the file.

Strings

Selecting a String message causes the String editor to be displayed on the right.

Message Manager – User’s Guide

• There is a large text box at the top of the String editor. Type the message to be
displayed here. Variables can be created by surrounding the variable name with
angle brackets. The variable’s name is later used in calls to UpdateVariable (or
UpdateVariableAdv).

• Color will change the color of any selected text in the text box.

• View Font Size only changes the size of the text in the editor. It has no effect on
how the String Message is displayed on the marquee.

• The Attributes section defines attributes for the String as a whole. Check the
marquee’s documentation for an explanation of the attributes.

• Not all values are available for every model of Alpha signs. The utility displays all
values that are available. Check the marquee’s documentation for a list of which
values are supported. Most marquees will use a default value if an unsupported
value is specified.

• The Save button at the bottom saves the String to the file.

Selecting an Alarm message brings up the Alarm editor on the right.

• This is the same editor used by Strings is used for Alarms. All attributes work in the
same manner.

Message Manager – User’s Guide

• The only difference from Strings is that Alarms do NOT support variables. Text
surrounded by angle brackets defines a variable in Strings. In Alarms the angle
brackets are considered part of the message.

METHODS

AlarmAdd

Syntax:
Marquee.AlarmAdd

Remarks:
This method is used to add an alarm message to the Control’s internal alarm queue. The
method attempts to add the alarm specified by the AlarmName and MessageFile
properties. A specified alarm can only be added to the queue once.

Alarms in the queue are cycled to the marquee in a round-robin manner. New alarms
are added to the front of the queue.

Method returns a Boolean value indicating success or failure of the method.

See Also:
MessageFile, AlarmName properties.

AlarmAcknowledge

Syntax:
Marquee.AlarmAcknowledge

Remarks:
This method is used to remove an alarm message from the Control’s internal alarm
queue. The method attempts to remove the alarm specified by the AlarmName and
MessageFile properties.

If the alarm removal empties the internal alarm queue, and Alarm mode was entered
implicitly, the Control will attempt to revert to the saved mode. See section on Alarm
mode in User’s guide.

Method returns a Boolean value indicating success or failure of the method.

See Also:
MessageFile, AlarmName properties.

AlarmAcknowledgeAll

Syntax:
Marquee.AlarmAcknowledgeAll

Remarks:
This method is used to remove all alarm messages from the Control’s internal alarm
queue. It is equivalent to calling AlarmAcknowledge for all alarms in the queue.

Message Manager – User’s Guide

Method returns a Boolean value indicating success or failure of the method.

ChangeMode

Syntax:
Marquee.ChangeMode(NewMode)

Parameters:
NewMode – String

Indicates new mode. Modes can be referenced either by name or number.
Possible values:

Template Mode: “Template” or “0”
String Mode: “String” or “1”
Alarm Mode: “Alarm” or “2”

Remarks:
This method is used to change the internal state of the Control. Calling ChangeMode
attempts to load the message specified by the File and Name properties of the specified
mode.

For example, calling ChangeMode(“1”) will attempt to change to string mode
and display the string specified by StringName and MessageFile.

Note that ChangeMode is also used to change the message displayed without changing
modes. If the Control is in String mode, a subsequent call to ChangeMode (“string”)
will simply change the String displayed.

Method returns a Boolean value indicating success or failure of the method.

Clear

Syntax:
Marquee.Clear

Remarks:
This method clears the marquee display, and erases the values of all variables stored in
the marquee’s memory.

Does not rewrite the internal memory configuration table of the marquee.

Method returns a Boolean value indicating success or failure of the method.

GetSocketState

Syntax:
Marquee.GetSocketState

Remarks:
This method will return a String containing the current state of the socket connection. The
states that might be seen are:
Closed [0]
Closing [8]
Connected [7]
Connecting [6]

Message Manager – User’s Guide

Connection Pending [3]
Error [9]
HostResolved [5]
Listening [2]
Resolving Host [4]
Unknown [#] (where # would be the number returned by the Winsock control)

Initialize

Syntax:
Marquee.Initialize(VariableSize)

Parameters:
VariableSize – Optional Integer

Specifies the size of the string files created in the marquee’s memory. Default
size (if parameter is omitted) is 32 bytes.

Remarks:
Method (or the InitializeAdv method) must be called prior to calling any other method
of the Control.

Method creates the permanent socket connection with the marquee, if LAN connection is
specified. The memory configuration table is then sent to the marquee. Configuration
consists of 64 string files and one text file. Size of the string files is determined by the
VariableSize parameter. Any remaining memory is assigned to the single text file.

Method returns a Boolean value indicating success or failure of the method.

InitializeAdv

Syntax:
Marquee.InitializeAdv(VariableSize, OpenCloseIPPort)

Parameters:
VariableSize – Optional Integer

Specifies the size of the string files created in the marquee’s memory. Default
size (if parameter is omitted) is 32 bytes.

OpenCloseIPPort – Optional Boolean (True or False)
Specifies whether the socket connection should be opened and closed for each
transmission or whether a permanent socket connection should be established.
Default value is False.

Remarks:
Method (or the Initialize method) must be called prior to calling any other method of
the Control.

If True is passed for the OpenCloseIPPort parameter and the LAN connection is specified,
the control will open and close the socket connection for every transmission (similar to
how the serial connection works.) If False is passed for the OpenCloseIPPort parameter
(or the parameter is omitted) and the LAN connection is specified, this method creates a
permanent socket connection with the marquee. The memory configuration table is then
sent to the marquee. Configuration consists of 64 string files and one text file. Size of

Message Manager – User’s Guide

the string files is determined by the VariableSize parameter. Any remaining memory is
assigned to the single text file.

Method returns a Boolean value indicating success or failure of the method.

QuickDisplay

Syntax:
Marquee.QuickDisplay(Text, Color, Font, Mode, Special, Position)

Parameters:
Text – String

The text to be displayed.

Color – Optional String
The color to use when displaying Text. Must be one of:

“AutoColor” – default if Color is unspecified
“Red”
“Green”
“Amber”
“DimRed”
“DimGreen”
“Brown”
“Orange”
“Yellow”
“Rainbow1”
“Rainbow2”
“Mix”

Font – Optional String
The font to use when displaying Text. Must be one of:

“S5”
“S7” – default if Font is unspecified
“F7”
“S10”
“FFULL”
“SFULL”

Note: Values are of the form “S(tandard) | F(ancy)” followed by the height.

Mode – Optional String
The mode in which to display Text. Must be one of:

“Rotate”
“Hold”
“Flash”
“RollUp”
“RollDown”
“RollLeft”
“RollRight”
“WipeUp”
“WipeDown”
“WipeLeft”
“WipeRight”
“Scroll”

Message Manager – User’s Guide

“AutoMode” – default if Mode and Special is unspecified
“RollIn”
“RollOut”
“WipeIn”
“WipeOut”
“CompressedRotate”

Note: see marquee documentation for description of each.

Special – Optional String
The special mode in which to display Text. Special overrides Mode if both are
specified. Must be one of:

“Twinkle”
“Sparkle”
“Snow”
“Interlock”
“Switch”
“Slide”
“Spray”
“Starburst”

Note: see marquee documentation for description of each.

Position – Optional String
The position at which to display Text. Must be one of:

“Top”
“Middle”
“Bottom”
“Fill”

Remarks:
Method displays the message defined by its parameters, IF POSSIBLE. Not all marquees
are capable of all listed colors, modes, and fonts. Certain positions do not allow certain
fonts, etc. The marquee will usually use a default value if the specified option or
combination is invalid. The defaults shown above are the Control’s defaults. These
defaults will be sent when a parameter is not specified.

Using QuickDisplay does not change the Control’s state. A subsequent call to
ChangeMode will return the marquee to the mode used before QuickDisplay,
provided none of the properties have been changed.

Method returns a Boolean value indicating success or failure of the method.

ResetBoard – Boolean

Syntax:
Marquee.ResetBoard

Remarks:
Method causes the marquee to run through its startup diagnostic sequence (soft reset.)
The soft reset does not clear the marquee’s memory.

This method has no affect on the Control or its internal data.

Message Manager – User’s Guide

Method returns a Boolean value indicating success or failure of the method.

ResetCommunication – Boolean

Syntax:
Marquee.ResetCommunication

Remarks:
In Serial mode, the method closes the COM port if it was stranded open.

In TCP/IP mode, the method closes the socket connection and attempts to re-establish
the socket connection.

Method returns a Boolean value indicating success or failure of the method.

UpdateVariable

Syntax:
Marquee.UpdateVariable(Name, Value)

Parameters:
Name – String

The name of the variable to be updated.
Value – String

The value to be displayed.

Remarks:
Method causes the Control to look through the list of available variables for the current
message. If Name is found, Value is sent to the marquee. If Value is longer than the
variable’s defined length, Value is truncated. If Value is shorter, it is left aligned in the
defined space.

Method returns a boolean value indicating success or failure of the method.

UpdateVariableAdv

Syntax:
Marquee.UpdateVariableAdv(Name, Value, Color, Flash)

Parameters:
Name – String

The name of the variable to be updated.
Value – String

The value to be displayed.
Color – String

Optional. Determines the variable’s color. If omitted, variable’s color is
determined by the message. Possible values:

“AutoColor”
“Red”
“Green”
“Amber”
“DimRed”
“DimGreen”

Message Manager – User’s Guide

“Brown”
“Orange”
“Yellow”
“Rainbow1”
“Rainbow2”
“Mix”

Flash – Byte [0 - 1]
Optional. Causes variable to flash. If omitted, variable does not flash.

0 – Off (no Flash)
1 – On (Flash)

Remarks:
Method causes the Control to look through the list of available variables for the current
message. If Name is found, Value is sent to the marquee.

If Value is longer than the variable’s defined length, Value is truncated. If Value is
shorter, it is left aligned in the defined space.

Since flashing only occurs while the message is stationary on the marquee, Flash is
dependent on the mode and speed of the message that contains the variable. If the
optional rotating text is used on the “multiple page” template, the flash will not be seen
on the marquee.

If Color is omitted, the variable is displayed in the color defined by the message.

Method returns a boolean value indicating success or failure of the method.

PROPERTIES

AlarmName

Type: String

Availability: Run-time only

Remarks:
Name of alarm to look for in the specified message file. Used in conjunction with
MessageFile. This property should be set before a call to AlarmAdd,
AlarmAcknowledge, or a call to ChangeMode that changes to Alarm mode.

MarqueeAddress
Type: String (length of 2): Hexadecimal value.

Availability: Design-time & Run-time

Remarks:
Specifies the internal address of the marquee. Can be used to route a message
to a specific marquee.

MarqueeConnectMode
Type: Byte [0 – 2]

0 – Serial Connection

Message Manager – User’s Guide

1 – LAN Connection
2 - Simulate

Availability: Design-time only

Remarks:
Specifies the means for connecting to the marquee. Serial Connections are
established and relinquished as needed. LAN Connections are established and
relinquished upon Control initialization and termination (unless the InitializeAdv
method was used to tell the Control to open and close the socket connection on
every transmission). Simulate opens the AlphaNET simulator (alphasim.exe) and
displays any messages sent in it.

MarqueeLogFile
Type: String

Availability: Design-time & Run-time

Remarks:
Specifies the file and path to log errors to. Any method which returns FALSE will
write an error message to this file, if it is specified.

MarqueeType
Type: Byte: [0]

0 – Alpha

Availability: Design-time only

Remarks:
Reserved for future use.

MessageFile
Type: String

Availability: Design-time & Run-time

Remarks:
Message file to access when looking for a given message. Used in conjunction
with TemplateName, StringName, AlarmName. Can be changed at run-
time to allow multiple files to be used.

Can be set initially on the ‘General’ property page. If all template messages are
contained in one file and the property is set at design time, this property need
not be used at all in code.

NetworkAddress
Type: String

Availability: Design-time only

Remarks:
Network address where LAN adapter resides. Can be an IP address, or network
name, provided that the local computer can resolve it.

Message Manager – User’s Guide

NetworkPort
Type: Integer: [0 – 32767]

Availability: Design-time only

Remarks:
Port at which to open socket connection with LAN adapter.

SerialComPort
Type: Byte: [1-16]

Availability: Design-time only

Remarks:
COM port to use for serial communication.

SerialBaudRate
Type: Long: [100, 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800,

 38400, 56000, 57600, 115200, 128000, 256000]

Availability: Design-time only

Remarks:
Baud rate to at which to open COM port.

SerialParity
Type: String [“None”, “Even”, “Odd”, “Mark”, “Space”]

Availability: Design-time only

Remarks:
Parity used when opening COM port.

SerialDataBits
Type: Byte: [4, 5, 6, 7, 8]

Availability: Design-time only

Remarks:
Data bits used for COM port.

SerialStopBits
Type: Byte: [1, 2]

Availability: Design-time only

Remarks:
Stop bits used for COM port.

StringName
Type: String

Message Manager – User’s Guide

Availability: Design-time & Run-time

Remarks:
Name of string to look for in the specified message file. Used in conjunction with
MessageFile. This property should be set before a call to ChangeMode that
changes to String mode.

TemplateName
Type: String

Availability: Design-time & Run-time

Remarks:
Name of template to look for in the specified message file. Used in conjunction
with MessageFile. This property should be set before a call to ChangeMode
that changes to Template mode.

	Alpha Marquee Control
	ActiveX Developer’s Reference
	Version 2.0
	
	Initialize the Control
	Pre-defined Messages
	Custom Messages
	Other Functionality
	Changes in 1.0.2
	Template Mode
	String Mode
	Alarm Mode
	No State
	Communication
	
	Serial
	TCP/IP
	Simulate

	Single marquee per connection
	Multiple marquees per connection
	
	Serial
	TCP/IP

	User Interface
	
	Templates
	Strings

	Clear
	AlarmName
	MarqueeAddress
	MarqueeConnectMode

	MarqueeLogFile
	MarqueeType
	MessageFile

	NetworkAddress
	NetworkPort
	SerialComPort
	SerialBaudRate
	SerialParity
	SerialDataBits
	SerialStopBits

	StringName
	TemplateName

